La Tout et plus encore Academy

Quelques figures illustrant cette histoire compacte de ∞. Qu'elles en soient ici remerciées.
Dans un ordre qui n'est pas immédiatement déterminé.

AlembertAlembert BremermannBremermann BoltzmannBoltzmann AnaximandreAnaximandre ZenonZenon LagrangeLagrange
Hermann WeylHermann Weyl LaplaceLaplace De MorganDe Morgan John Stuart MillJohn Stuart Mill PeanoPeano ZermeloZermelo
PoincaréPoincaré LegendreLegendre Paul J CohenPaul J Cohen FourierFourier MaclaurinMaclaurin HardyHardy
Jakob BernoulliJakob Bernoulli FregeFrege Guillaume de l\Guillaume de l\ KroneckerKronecker WeierstrassWeierstrass HilbertHilbert
MerayMeray G. G. OmorfonskiG. G. Omorfonski DiderotDiderot Isaac BarrowIsaac Barrow Grigor DessenovichGrigor Dessenovich GaliléeGalilée
James GregoryJames Gregory GaloisGalois GödelGödel FermatFermat PlatonPlaton HofstadterHofstadter
AristoteAristote CavalieriCavalieri CauchyCauchy NewtonNewton HamiltonHamilton LiouvilleLiouville
DirichletDirichlet DesarguesDesargues Alexis ClairaultAlexis Clairault ArchimèdeArchimède HalleyHalley PythagorePythagore
LeibnizLeibniz ParmenideParmenide LebesgueLebesgue EuclideEuclide KummerKummer KantKant
EulerEuler QuineQuine EinsteinEinstein WhiteheadWhitehead John WallisJohn Wallis Daniel BernoulliDaniel Bernoulli
KeplerKepler FraenkelFraenkel RamseyRamsey Morris KlineMorris Kline BrouwerBrouwer Calvus Ubersetzer MonsCalvus Ubersetzer Mons
VieteViete DedekindDedekind DescartesDescartes Mittag-LefflerMittag-Leffler MercatorMercator Johann BernoulliJohann Bernoulli
RiemannRiemann Francis BaconFrancis Bacon HermiteHermite KleeneKleene BrunelleschiBrunelleschi Nicolas de CuesNicolas de Cues
Grégoire de Saint- VincentGrégoire de Saint- Vincent GaussGauss BolzanoBolzano du Bois-Reymonddu Bois-Reymond LavineLavine CantorCantor

(Toutes ces illustrations ou reproductions sont bien évidemment la propriété de leurs ayant-droits respectifs.)